

DEVELOPING HIGH PERFORMANCE HEAT EXCHANGERS FOR GEOTHERMALS

Industrial challenges

99

Project GeoHex aims to develop heat exchanger (HX) materials, addressing both the improvements in the anti-scaling and anti-corrosion properties as well as the heat transfer performance of the HX material, leading to more efficient and cost-effective systems.

Technical objectives

Develop tools to characterise bubble droplet dynamics, using both numerical simulation and the development of an image processing algorithm Develop materials for 3 different heat transfer mechanisms used in heat exchangers:

- Single phase heat transfer
- Condensing
 surface
- Boiling surface

Develop a sustainability model for GeoHex using parametric lifecycle assessment (LCA) and cost model of the GeoHex materials (to be developed in this project) to identify the environmental and cost performance of the materials

5

Demonstrate the scalability and manufacturability of six prototype GeoHex materials.

Maximising energy transfer and efficiency with innovative materials

Improving environmental footprint

Impact

Benefits

To significantly reduce the cost of a geothermal plant

To contribute towards strengthening the EU leadership on renewables

Consortium

UK

TWI Ltd Technovative Solutions University of Leicester

ICELAND

ON University of Iceland ICETEC Grein Research

FRANCE

CEA ENOGIA

NORWAY

Flowphys

ITALY Spike Renewables

ROMANIA

Universitatea Politehnica Bucuresti

PHILIPPINE

Quantum Leap

This project has received funding from the European Union's Horizon 2020 research and innovation programme. Grant agreement 851917.

GEOHEXPREOJECT.EU